SCHOOL OF GOVERNMENT Environmental Finance Center

Managing Your Utility into the Future

Tribal Utility Summit 2024

Hope Thomson UNC Chapel Hill Environmental Finance Center

Image: School of governmentImage: School of governmentImage

Supporting fair, effective, and financially sustainable delivery of environmental programs through:

- Applied Research
- Program Design and Evaluation
- Teaching and Outreach
- Advising
- Policy Analysis

HI! I'M HOPE.

- Project Director at the UNC EFC
- Focused on technical assistance, training and financial analysis for utilities
- Trained in public health and environmental financial risk; background in science communication & chemistry
- Based in Durham, North Carolina

INTRODUCTIONS

- Name
- Organization
- Role & relation to utility
- Favorite summer activity

Agenda

- 10:30am 12:00pm: Intro to environmental finance & financial benchmarks (KPIs)
- 12:00pm-1:00pm: Lunch
- 1:00pm 3:00pm: Practice KPIs & Introduce rate setting goals
- 3:00pm 3:30pm: Networking break
- 3:30pm 5:00pm: Practice rates math & asset management review

2

Protecting water resources and supplying highest quality drinking water

Environmental & Health

6

Protecting water resources and supplying highest quality drinking water

Providing basic services that everyone in the community can afford

2

Environmental & Health

7

Public Service

Protecting water resources and supplying highest quality drinking water

Providing basic services that everyone in the community can afford

Environmental & Health

Public Service

Public Enterprise

2

Putting sustainable

business practices

into action

To serve all these purposes, water/wastewater systems need to be sustainably financed – *how you pay for it matters!*

10

BASICS OF UTILITY FINANCE

ENVIRONMENTAL FINANCE CENTER

Water and Wastewater as Enterprise Funds

- Self-sufficiency
- Separated from other funds
- REVENUES collected = COSTS expended
- Avoid or minimize transfers 11

Characteristics of Enterprise funds

- Service industries, users
- Production industries
- Can be capital intensive
- Diverse user charges, fees and pricing strategies
- Self-regulated monopolies
- Often impact public health and environmental protection; have regulated requirements

• This is the "science" part of the rate making process

 Sets the bar for how much you need to operate a financially sustainable utility

Three Types of Costs

- Operating Costs—what you need to run the system day in and day out (O&M), etc.)
 - Look at *trends* from previous years and challenge your operators to look for cost savings
 - Look to the future
 - Don't forget *indirect costs* of running the system
 - shared management costs, shared facility costs, etc.

Three Types of Costs

- Operating Costs—what you need to run the system day in and day out
- Capital Costs—rehabilitation and replacement of existing infrastructure and new infrastructure
 - Asset management and capital improvement plans are key
 - Be flexible in your spending but do not manage to failure

Three Types of Costs

- Operating Costs—what you need to run the system day in and day out
- Capital Costs—rehabilitation and replacement of existing infrastructure and new infrastructure
- Debt Service—what you owe on loans and bonds
 - Principal and Interest

Two Types of Revenues

- System Income—Money from rates, tap fees, system development charges, grants, penalties, other sources
 - Note: To be a pure enterprise fund, not taxes (unless explicitly permitted).

Two Types of Revenues

- System Income—Money from rates, tap fees, system development charges, grants, penalties, other sources
 - Note: To be a pure enterprise fund, not taxes (unless explicitly permitted).
- Debt—Money from bonds and loans

Many Types of Reserve Funds

- Capital Reserve Fund—Infrastructure rehabilitation and replacement
- Repair Fund—Known, ongoing maintenance issues
- Emergency Fund—Unknown, unanticipated maintenance issues
- Rainy Day Fund—Unexpected revenue shortfalls

Water System Finance Diagram

Approaches to paying for Capital improvements

Pay-Go/Saving Up

- Rates sufficient for emergencies?
- Pay-Use/Borrow
 - Subsidized loans (e.g., SRF, USDA, BRIC)
 - Bonds
- Get a Grant

Don't discount any funding opportunities

Consequences of not understanding revenue requirement

- Financially unsustainable
- Collect too much
- Collect too little
- Sending the wrong message to your customers

Budgets should reflect the goals of the governing body

- Appropriation of funds
- Measuring and promoting financial and operational performance
- Setting rates and fees
- Public education and communication

Budgeting for the full cost

Operations & maintenance expenditures	Reserves for capital improvement	Long-term debt (principal and interest)	Contingencies for emergencies
Taxes and accounting costs	Contracts	Indirect costs (fleet, buildings, shared expenditures, etc.)	Retirement

Budgeting for the full cost

Knowing all about the costs informs how much is needed in *revenues*

Contingencies for emergencies	Reserves for capital improvement	(fleet, buildings, shared expenditures, etc.)	Retirement
----------------------------------	--	---	------------

Water & Wastewater are Capital intensive

\$ of invested capital per one dollar of generated revenue \$8.00 \$7.03 \$7.00 \$6.00 \$5.00 \$3.85 \$4.00 \$3.45 \$3.00 \$1.69 \$1.61 \$2.00 \$1.11 \$0.35 \$1.00 \$0.00 3-Large IOU 1-MuniWater 2-All NAWC 4-Electric 5-Tel Cos 6-Avg All Ind. 7-S&P 500

THE UNIVERSITS OUTCE: Research Foundation, "Improving Water Utility Capital Efficiency" (2005 ENVIRONMENT data) ANCE CENTER 26

Assessing Financial Condition

Quick Overview of Financial Statements

ENVIRONMENTAL FINANCE CENTER

Quick Overview of Financial Statements

- Audited financial statements are produced at the end of each fiscal year and reflect only that fiscal year.
 - Ex post based on what actually happened
- Performed by a third-party
- Primarily interested in *enterprise funds or proprietary funds*
- Varying degrees of complexity, like budgets
- Alternatives:
 - balance sheets
 - shareholder reports
 - annual reports

KPIS

30

What are Key Performance Indicators?

What are KPIs?

QUANTIFIABLE MEASURES OF PERFORMANCE

- Things we can measure
- Things that people care about
- Data is helpful
- MEASURE PROGRESS
 - Assess operational performance
 - Set goals and understand growth
- IMPACTS INVESTMENT CAPACITY
 - Investors, particularly institutional investors, use to assess financial health
- INDICATIVE OF FINANCIAL HEALTH OF A COMMUNITY

Water Clips: Financial Benchmarking

https://www.youtube.com/watch?v=QkwTJe-Nbuk&t=1s

Why Care About KPIs?

- Get a holistic picture of utility performance and needs
- Set future goals and understand growth
- Inform capital planning
- Understand affordability
- Financing options

Key Performance Indicators

Is your system self-sufficient?	Operating Ratio
Are you able to cover your debt service after paying for your day-to-day operations?	Debt Service Coverage Ratio
If your customers stop paying their bills, how long can you maintain operations?	Days Cash on Hand
Can your system meet its short-term obligations?	Quick / Current Ratio
How much of your utility's expected life has already run out (and how much is left)?	Asset Depreciation

Operating Ratio

- A measure of self-sufficiency
- The revenue you get from daily operations, divided by the expenditures or expenses you make to keep operations running

including (or excluding) depreciation THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL ENVIRONMENTAL FINANCE CENTER

Operating Ratio

Operating Revenues

Income from:

- Rates
- •Late Fees
- Penalties
- Connection Fees
- •Tap Fees

Operating Expenses

O&M Costs:

- Supplies
- •Salaries and Benefits
- •Overtime
- •Taxes
- Insurance
- Depreciation
- DOES NOT include debt 36 service or reserves
This Funny Thing Called Depreciation

- An accounting solution for a physical problem: aging infrastructure
- You have a "cost" every year of your infrastructure wearing out, a percentage of its value

Operating ratio and depreciation

- Including depreciation in your operating ratio
 - "Fully funding" depreciation allows you to have saved for replacement at the time replacement is needed
 - (This isn't as good as doing asset management and capital planning, but it is better than nothing)
- Less necessary if you have a comprehensive capital improvement plan and are actively budgeting for future infrastructure

Debt Service Coverage Ratio

You need to be able to generate enough revenues to pay for O&M and principal and interest payments. A measure of the ability to pay debt service with operating revenue. Operating revenue left over after daily operation expenditures, divided by debt service. This metric is calculated by the funders and the debtors, it's a very common metric in the finance world.

Operating Revenues – Operating Expenditures (excludes depreciation)

Principal + Interest Payments on Long - term Debt

Days Cash on Hand

How long you can continue to pay for O&M without any additional revenues coming in

To calculate cash on hand you need to know what your unrestricted cash and cash equivalents are Unrestricted Cash and cash equivalents = Money that can be used for anything. Not all cash is unrestricted

Unrestricted cash and cash equivalents \times 365

Operating Expenses – *Depreciation*

do you have enough liquidity to pay your bills at the end of the year? Current Ratio

Unrestricted cash and cash equivalents + Receivables, net **Current Liabilities** >1.0 THE UN OF NORTH CAROLINA AT CHAPEL HILL ENVIRONMENTAL FINANCE CENTER

Current Ratio

Typically approached as current assets/current liabilities.

By definition, current assets are those assets that could be liquidated within 12 months.

UNC EFC takes a conservative approach and typically we do not include restricted cash or inventories

Unrestricted cash and cash equivalents + Receivables, net

Current Liabilities

What's next?

- Once we figure out where we are, how do we know where we are going?
- How do we estimate the future costs and revenues?

FINANCIAL HEALTH CHECKUP TOOL

1.1.1

5 years of Financial Audits	Assessment for Town of Anytown		
s years of financial / laans	Did you generate the revenues needed to pay for O&M and a little for capital?	Did you generate the revenues needed to pay for O&M by itself?	Did you generate the revenues needed to pay for O&M and existing debt service
Values from Financial Statement/CAFR	2.00	2.00	25.00
Total Operating Revenues	1.60 1.40	1.60	20.00 - 15.00 -
Total Operating Expenses		1.00 0.80	10.00
Depreciation & Amortization Expenses	0.60 - 0.40 - 0.20 -	0.60 - 0.40 - 0.20 -	0.00
Debt Principal Payments	0.00 2017 2018 2019 2020 2021	0.00 2017 2018 2019 2020 2021	-5.00 J • 2017 2018 2019 2020 2021
Debt Interest Payments	Did you have enough liquidity to pay your current liabilities at the end of the ye	ar? How many days could you continue to operate the utility with the cash levels availabl	le? How much have your utility's assets depreciated (nearing the end of their lives)?
Current Assets, excluding inventories, restricted cash, prepaids	25.00	1200 -	0% 10% 20%
Current Liabilities, excluding deposits & bond anticipation notes	15.00		30% - 40% - 50% -
Unrestricted Cash & Investments	5.00 -	200 -	70% - 80% - 90% -
Total Accumulated Depreciation	0.00 2017 2018 2019 2020 2021	0 2017 2018 2019 2020 2021	100% 2017 2018 2019 2020 2021
Total Depreciable Capital Assets			

Key: Blue line = target_

(edit targets in Step 2)

Step 2: Edit

Created by the Environmental Finance Center at the University of North Carolina, Chapel Hill

🗔 Financial Health Checkup

Five-Year Trends

Above dotted line = exceeded target (good)

Below dotted line = did not meet target (needs improvement)

http://efc.sog.unc.edu or http://efcnetwork.org Find the most up-to-date version in Resources / Tools

ENVIRONMENTAL FINANCE CENTER

Demo: FHCU Tool

HTTPS://EFC-AT-UNC.SHINYAPPS.IO/FINANCIAL_HEALTH_CHECKUP/

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL ENVIRONMENTAL FINANCE CENTER

46

BREAK FOR LUNCH

A TALE OF TWO SYSTEMS

Self-Assessing Financial Performance:

A Tale of Two Systems

Bavaria and Mayberry

Two small town community water systems from the same state

They Serve Similar Populations

They Have Similar Demographics

Vastly Different Financial Indicators (and appearance!)

Bavaria

Mayberry

Total Operating Revenues

Total Operating Expenses

> Please calculate two numbers one including depreciation, and one excluding depreciation

Operating Ratio Including Depreciation

MAYBERRY STATEMENT OF REVENUES, EXPENSES, AND CHANGES IN NET ASSETS PROPRIETARY FUNDS FOR THE YEAR ENDED DECEMBER 31, 2010

	Enterprise Funds Water and Sewer	
OPERATING REVENUES Charges for services Grants Total operating revenues		
OPERATING EXPENSES Personnel services Contractural services Other supplies and expense Depreciation Total operating expenses Operating income (loss)	$ \begin{array}{r} 178,885\\63,898\\126,202\\\underline{142,463}\\511,448\\(67,217)\end{array} $	

Operating Ratio – Mayberry Including Depreciation

Operating Expenses (including depreciation) (2)

Operating Ratio Excluding Depreciation

MAYBERRY

STATEMENT OF REVENUES, EXPENSES, AND CHANGES IN NET ASSETS PROPRIETARY FUNDS FOR THE YEAR ENDED DECEMBER 31, 2010

Enterprise Funds

Water and Sewer OPERATING REVENUES 444,231 Ś Charges for services Grants 444,231 Total operating revenues OPERATING EXPENSES 178,885 Personnel services 63,898 Contractural services 126,202 Other supplies and expense 142,463 Depreciation 511,448 Total operating expenses (67, 217)Operating income (loss) 2 m.

Operating Ratio – Mayberry Excluding Depreciation

Excluding Depreciation

Debt Service Coverage Ratio

Total Operating Revenues – Operating Expenses (excluding depreciation)

Principal + *Interest Payments on Long Term Debt*

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL ENVIRONMENTAL FINANCE CENTER

=

Debt Service Coverage Ratio

MAYBERRY STATEMENT OF REVENUES, EXPENSES, AND CHANGES IN NET ASSETS PROPRIETARY FUNDS FOR THE YEAR ENDED DECEMBER 31, 2010

OPERATING REVENUES Charges for services Grants Total operating revenues °_' ≁~` OPERATING EXPENSES Personnel services Contractural services Other supplies and expense Depreciation Total operating expenses Operating income (loss)

Enterprise Funds

Water and Sewer

178,885 63,898 126,202 142. 511 448 (67, 217)

MAYBERRY STATEMENT OF CASH FLOWS PROPRIETARY FUNDS FOR THE YEAR ENDED DECEMBER 31, 2010

Page 1 of 2

CASH FLOWS FROM OPERATING ACTIVITIES Receipts from customers Payments to suppliers Payments to employees Net cash provided by operating activities	Enterprise Funds Water and Sewer \$ 437,947 (187,296) (178,885) 71,766
CASH FLOWS FROM NONCAPITAL FINANCING ACTIVITIES Transfers in (out) Net cash (used) by noncapital financing activities	(60,000)
CASH FLOWS FROM CAPITAL AND RELATED FINANCING ACTIVITIES	-
Loan proceeds Purchases of capital assets Principal paid on capital debt Interest paid on capital debt Net cash (used) by capital and related financing activities	(39, 841) (49, 655) (35, 128) (124, 624)

Debt Service Coverage Ratio – Mayberry

ENVIRONMENTAL FINANCE CENTER

Days of Cash on Hand

– Unrestricted cash and cash equivalents

(Operating Expenses excluding depreciation) / 365

Days of Cash on Hand

MAYBERRY STATEMENT OF NET ASSETS PROPRIETARY FUND DECEMBER 31, 2010

	Water and Sewer
ASSETS	
Current assets	· 107 706 - (5)
Cash Restricted cash	176 424
Receivables not	11 070 -6
Total ourment persta	326,000
IOCAL CALIGAC ASSELS	
Canitaliassate	
Land and improvements	10,229
Distribution and collection systems	5 732,845
Buildings	503,398
Less accumulated depreciation	(2.514.933)
Total capital assets	3,731,539
10004, 05p1004, 000000	
Total Assets	\$ 4,057,539
	ann ann ann bhi aile aile aile aile aile
LIABILITIES	

Enterprise Funds

THE UNIVERSITY OF NORTH ENVIRONMENTAL FINANCE (

.

Days of Cash on Hand – Mayberry

Current Ratio

=

Unrestricted cash and cash equivalents + Receivables, net

Current Liabilities

Current Ratio – Mayberry

Current Liabilities (7)

4.

Your turn! Calculate the four ratios for **Bavaria**

Operating Ratio – **Bavaria**

Operating Expenses (including depreciation) (2)

Operating Ratio

Including Depreciation

Operating Ratio – **Bavaria** Excluding Depreciation

Operating Ratio

Excluding Depreciation

Debt Service Coverage Ratio – Bavaria

Operating Revenues (1)

(excluding depreciation)

Operating Expenses (2-3)

\$459,082

2.

1.32

Dep \$212,251

Principal & Interest on Long-Term Debt (4)

\$190,633

Debt Service Coverage Ratio

Days of Cash on Hand – **Bavaria**

Days of Cash on Hand

Current Ratio – Bavaria

Current Liabilities (7)

4.

Current Ratio

What Happened to Bavaria?

Or

Why the Notes to Financial Statements are Crucial

The accompanying notes are an integral part of these financial statements.

15

Bavaria corrected – including grant funds

Current Ratio

Bavaria Corrected for Missing Grant Funds

Caution: don't just look at last year

Example from a different utility.

Last fiscal year's ratios:

- Operating ratio = 1.02
- Debt service coverage ratio = $1.\sqrt{}$
- Days cash on hand = 145
- Current ratio = 1.2

Potential conclusion: "we're on the right track"

But consider the trends in the last 5 years

New conclusion: "we were OK, but something needs to change"

Break Time

?

Revenue Goals & Rate Setting

(THE ART OF) RATE SETTING

ENVIRONMENTAL FINANCE CENTER

Rates & Rate Setting

- Simple
- Based on expenses
- Cover full costs
- Fair, affordable & equitable

Rates & Rate Setting

- Simple
- Based on expenses
- Cover full costs
- Fair, affordable & equitable

- Super-complicated
- Frozen in time
- Based on political desires
- Based upon neighbors

Water System Objectives

Bring in enough revenue to cover the full cost of running the water system:

- 0&M
- Capital needs
- Debt service

Why do this?

Use pricing to encourage customers to reduce their water consumption

Why do this? What challenges does this create?

Use pricing to encourage businesses and agriculture to locate to your community or stay in your community

Why do this?

Ensure that all customers in your water system are able to afford enough water to live on

Why do this?

Affordability is Best Assessed Locally

• There is no nationally-accepted standard for affordability of water and wastewater service.

• You know your own community the best. You should set the threshold for affordability.

Full Cost Pricing

- Goal: charges for water/sewer cover the entire cost of running the system today and into the future
- Many ways to calculate
- Rate setting philosophy

Rate Setting Philosophies

Jeff Hughes

The Painful Art of Setting Water and Sewer Rates

- An increase in mergers and acquisitions
- Almost \$8 billion in assets and more than \$1 billion in annual revenues¹
- Changing regulations, affecting the bottom line
- A backlog in capital investment needs
- Interruptions in supplies that hurt revenues
- Loss of major customers
- Innovative pricing and customerrelations strategies
- Sagging revenues THE UNIVEI ENVIRONMENTAL FINANCE CENTER

typically fall on governing boards that were chosen not as business or technical experts but as representatives of their constituents on a broad range of matters.

The drought of 2002 brought two types of water stories to the headlines: (1) the struggles of many communities to maintain their water supplies and (2) the financial difficulties of many communities due to decreased sales. The response to the first type of circumstance was immediate and significant: an executive order requiring conservation, and statewide initiatives to examine current supplies. The response to the second type of circumstance has been less obvious and less pronounced. Table 1). These numbers are impressive. However, the projected numbers are staggering. According to a study by the North Carolina Rural Economic Development Center, the state will need more than \$11 billion in investments to meet its capital needs for water and sewer infrastructure over the next twenty years.²

In North Carolina, as throughout the country, numerous water and sewer enterprises owned by local governments benefited from the federal government's ambitious construction grants program of the 1970s (for the patterns of federal wastewater funding from 1970 to 2000, see Figure 1). Many local government officials fondly remember those days of

94

Rate Setting Philosophies

Payment for access vs. payment for volume of product received

Fixed charges for fixed costs and variable charges for variable costs

Some mix of the above ideas

THE UNIVERSITY OF NOR ENVIRONMENTAL FINANCE 95

Rate setting philosophies: Other rate design elements

- Customer classes/distinction
- Billing period
- Base charge vs. volumetric
- Consumption allowance (included in base charge)
- # of blocks, sizes and rate differential
- Temporal adjustments
- Frequency of rate changes

Rate setting Exercise

Small town with a water and wastewater system

Population: 1,100

Service Connections: 450

MHI: \$24,432

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEI ENVIRONMENTAL FINANCE CENTER

97

For the Exercise

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL ENVIRONMENTAL FINANCE CENTER Where does this number come from? Not from the "full cost" actually! We'll use it for this exercise, but it isn't the 98 correct revenue target.

• In its pure form, everyone in the water system pays the same amount for access to the system, regardless of how much water they use (base charge or flat fee)

We charge a flat rate of \$ 15,00 mosting PO-BOX 133 JACKSONNILLE $\mathbf{v}^{\mathbf{r}}$ We ARE A SMOIL TOWN WE DO NOT GAVE SEWAGE

Jacksonville, GA ¹⁰⁰

• In its pure form, everyone in the water system pays the same amount for access to

Data needs:Total revenue requirementNumber of accounts

• In its pure form, everyone in the water system pays for the volume of water received and only for the volume of water received (volumetric rate)

WATER & SEWER RATES

In Town

- Water Sewer Out of Town
- \$ 7.72 per 1000 gallons
- \$ 10.73 per 1000 gallons

Water

\$ 15.44 per 1000 gallons \$ 21.46 per 1000 gallons

Sewer

Troutman, NC

• In its pure form, everyone in the water system pays for the volume of water received

Data needs: Total revenue requirement Total gallons <u>sold</u>

A combination: base charge + volumetric charge

Readsboro, VT¹⁰⁷

Base rate + volumetric charges

Gallons of Water Produced ------>
Base Charge for Fixed Costs; Volumetric Charge for Variable Costs

- In its pure form,
 - all of the fixed costs of the water system would be covered by the base charge, and
 - all of the variable costs would be covered by the volumetric rate

Base Charge for Fixed Costs; Volumetric Charge for Variable Costs

Fixed vs. variable revenues & expenses

Annual Revenues and Expenses for Charlotte-Mecklenburg Utilities (NC)

Figure Credit: Doug Bean (CMU Director) 2008 112

Fixed	Revenues decrease when you sell less – often resulting in higher bills to continue to cover costs			
Revenu <u>change</u> the amo water u	Rate structures can be designed to better cover fixed costs including administrative and capital needs	ses stay ant		

THE UNIVERSITY OF NORTH CAPOL ENVIRONMENTAL FINANCE CENTER

Revenues

Expenses

Base Charge for Fixed Costs Volumetric Charge for Variable Costs

- In its pure form:
 - all the fixed costs of the water system would be covered by the base charge, and
 - all the variable costs would be covered by the volumetric rate
- Conservation-oriented
- Allows for consideration of a "lifeline" rate for small users
- Gives the opportunity to customers who manage their use an opportunity to control their costs

Base Charge for Fixed Costs Volumetric Charge for Variable Costs

Data needs:

Total revenue needed to cover fixed costs Total Accounts Total revenue needed to cover variable costs Total gallons sold

For example calculation

THE UNIVERSITY OF NORTI ENVIRONMENTAL FINANCE

Base Charge for Fixed Costs; Volumetric Charge for Variable Costs

• Pick a base charge and see what the volumetric charge would need to be

WATER & SEWER RATES AND FEE SCHEDULE EFFE(

IN TOWN

- WATER MINIMUM (1000 GALLONS) \$25.00
- SEWER MINIMUM (1000 GALLONS) \$25.00
- DISPOSAL FEE \$ 5.00

ADDITIONAL WATER PER 1000 GALLONS \$ 6.15

Denton, NC 118

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL ENVIRONMENTAL FINANCE CENTER

- What information do we need to make this calculation?
 - Total Accounts
 - Total Revenue Needed
 - Total Gallons

120

THE UNIVERSITY OF NORTH

Different strategies

- A. \$63.79 base
- B. \$10.49 per 1,000 gallons
- C. \$54.08 base\$1.59 per 1,000 gallons
- D. \$25.00 base\$6.37 per 1,000 gallons

Where do you think the \$25 per month base charge came from?

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL ENVIRONMENTAL FINANCE CENTER

How do rate structures impact customers?

1,000 gallons/month

4,000 gallons/month

123

34,000 gallons/month

The Rates

- \$63.79 base *payment for access*
- \$10.49 per 1,000 gallons *payment for volume*
- \$54.08 base
 \$1.59 per 1,000 gallons *fixed vs. variable*
- \$25.00 base
 \$6.37 per 1,000 gallons *pick a base charge*

125

	1,000 gallons/month	4,000 gallons/month	12,000 gallons/month	34,000 gallons/month
Payment for Access (Fixed Monthly Bill)	\$63.79	\$63.79	\$63.79	\$63.79
Payment for Volume of Product Received	\$10.48	\$41.92	\$125.76	\$356.32
Base Charge for Fixed Costs; Volumetric Charge for Variable Costs	\$55.67	\$60.44	\$73.16	\$108.14
\$25 Base Charge; Volumetric Charge for Rest	\$31.37	\$50.48	\$101.44	\$241.58

THE UNIVERSITY ENVIRONMENTAL

Rate design elements

- Customer classes/distinction
- Billing period
- Base charge vs. volumetric
- Consumption allowance (included in base charge)
- # of blocks, sizes and rate differential
- Temporal adjustments
- Frequency of rate changes

Uniform ("Flat") Rates vs Volumetric rates

Uniform Volumetric Charge

Base Fees:

Residential: 25.00 Commercial: 40.00 Distribution: 30.00 What rate setting goals might this accomplish?

Holiday Hills, AZ

128

Usage fee: 14.75 per thousand gallons

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL ENVIRONMENTAL FINANCE CENTER

Increasing Block Rates

- At higher usage levels, the price increases, which encourages customers to cut back on usage
- Provides affordability for lower users
 - "Lifeline" or "essential use"
- Sends a conservation signal
- Can help with capacity constraints

Increasing Block Rates

Increasing Block Rates

What rate setting goals might this accomplish?

Tier	Water Usage	Rate per 1,000 gallons (\$)
1	First 5,000 gallons or less	\$13.00
2	Next 5,001 – 15,000	\$17.75
3	Next 15,001 – 25,000 (Over 15,000 cattle lessees)	\$18.75
4	25,001 or more for all except cattle lessees	\$19.75

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL ENVIRONMENTAL FINANCE CENTER

131

Napu'u Water Inc., HI

Increasing Block with Low 1st Block

What rate setting goals might this accomplish?

Base Water Rates (residential effective 4/1/2015)

Line Size	Inside City Limits	Outside City Limits
5/8 - 3/4 inch line	\$ 15.50	\$ 25.20
1 inch line	\$ 15.50	\$ 25.20

Volume Rate (residential *effective 4/1/2015*)

1 st 2,000 gallons	\$ 2.50 per 1,000 gal.	\$ 3.00 per 1,000 gal.
2,001 – 6,999 gallons	\$ 7.20 per 1,000 gal.	\$ 8.00 per 1,000 gal.
7,000 + gallons	\$ 9.00 per 1,000 gal.	\$ 9.00 per 1,000 gal.

132

Winder, GA

Block Designs

For block rate structures to be effective:

- Decide on the correct number of blocks
- Decide on where the blocks should end/start
- Set significant rate differentials between blocks
- Keep in mind your base charge and consumption allowance
- Meter reading must be punctual, and meters must be reliable
- Think about large families, commercial users, etc.

Try not to do this!

			-			
	Per 1000 gal.	water	Per 1000 gal.	sewer	combined	
fixed 1000	increase	11.66	increase	13.10	24.76	
2000	2.43	14.09	3.67	16.77	30.86	
3000	4.62	18.71	7.06	23.83	42.54	
4000	5.38	24.09	7.35	31.18	55.27	
5000	5.50	29.59	7.68	38.86	68.45	
6000	5.75	35.34	7.82	46.68	82.02	
7000	5.93	41.27	8.00	54.68	95.95	
8000	6.12	47.39	8.20	62.88	110.27	
9000	6.31	53.70	8.37	71.25	124.95	
10000	6.31	60.01	8.37	79.62	139.63	
11000	6.31	66.32	8.37	87.99	154.31	
12000	6.31	72.63	8.37	96.36	168.99	
13000	6.31	78.94	8.37	104.73	183.67	
14000	6.31	85.25	8.37	113.10	198.35	
F 15000	6.31	91.56	8.37	121.47	213.03	
15001-99999999	6.51	98.07	8.56	130.03	228.10	

THE UNIVERSITY OF NORT ENVIRONMENTAL FINANC

Try not to do this!

, his!				-			
				r 1	000 gal.	sewer	combined
				n	crease	13.10	24.76
			<u> </u>		3.67	16.77	30.86
	3000		4.62		7.06	23.83	42.54
	4000		5.38		7.35	31.18	55.27
					7.68	38.86	68.45
	76	Ċ			7.82	46.68	82.02
	,,,	•			8.00	54.68	95.95
					8.20	62.88	110.27
					8.37	71.25	124.95
	10000	0.31	60.01		8.37	79.62	139.63
	11000	6.31	66.32		37	87.99	154.31
	12000	6.31	72.63			96.36	168.99
	13000	6.31	78.94			104.73	183.67
	14000	6.31	85.25		8.37	113.10	198.35
THE UNIVERSITY OF NORTH	15000	6.31	91.56		8.37	121.47	213.03
	15001-99999999	6.51	98.07		8.56	130.03	228.10

Decreasing block rates

- An alternative to customer classes that lowers price per gallon as usage increases
- Helpful for when you can benefit from economies of scale
- Recognizes that high users may also have more consistent use that is less work to maintain (i.e., lower peaks)

Decreasing Block Rates

What rate setting goals might this accomplish?

137

COMMERCIAL WATER:

0 to 2000 gallons:\$21.25	Minimum Bill
Additional:\$7.00	2001 – 12,000 gal
\$6.75	12,001 - 27,000 gai

\$6.50 27 001 gallon & up

Decreasing Block Rates

What rate setting goals might this accomplish?

138

WATER RATES – CONSUMPTION RATES – 1000 – 1,000,000 = 3.75 per 1,000 1,000,000 + = \$0.30 per 1,000

BASE RATE – 80.00 per residential unit 150.00 per commercial unit

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL ENVIRONMENTAL FINANCE CENTER

Increasing then Decreasing Block Rates

What rate setting goals might this accomplish?

139

Water Rates

EFFECTIVE JUNE 1, 2010 (ROUTES 1-9) FIRST – 2000 GALLONS 2001-3000 GALLONS 3001-10,000 GALLONS OVER 10,000 GALLONS

\$12.30 \$3.30 PER 1000 \$3.60 PER 1000 \$2.70 PER 1000

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL ENVIRONMENTAL FINANCE CENTER

Chattooga County, GA

Block Size Based on Meter Size

THE UNIVERSITY OF

ENVIRONMENTAL FI

What rate setting goals might this accomplish?

	1" Meter (All Classes)	
	1 to 32,000 Gallons Over 32,000 Gallons	\$6.72 \$10.34
	1 ½" Meter (All Classes)	
	1 to 106,000 Gallons Over 106,000 Gallons	\$6.72 \$10.34
	2" Meter (All Classes)	
	1 to 195,000 Gallons Over 195,000 Gallons	\$6.72 \$10.34
	3" Meter (All Classes)	
1 N	1 to 434,000 Gallons Over 434,000 Gallons	\$6.72 \$10.34

\$6.72
\$10.34
A. Peterson Water, AZ

Block Size Based on Meter Size

What rate setting goals might this accomplish?

141

	Water Consumption Charges - Per 1,000 Gallons		
(5/8" Meter	Rate	
	15t Tier (5,001 – 10,000 gallons per month)	\$ 2.75	
	2 nd Tier (10,001 17,000 gallons per month)	\$ 4.60	
	3 rd Tier (17,001 – 24,000 gallons per month)	\$ 6.10	
	4 th Tier (24,001 and above per month)	\$ 7.10	
	3/4" Meter	Rate	
	1 st Tior (5,001 – 15,000 gallons per month)	\$ 2.75	
	2 nd Tier (15,001 – 25,500 gallons per month)	\$ 4.60	
	3 rd Tier (25,501 – 36,000 gallons per month)	\$ 6.10	
	4 th Tier (36,001 and above gallons per month)	\$ 7.10	
	1" Meter	Rate	
	1 st Tior (5,001 – 25,000 gallons per month)	\$ 2.75	
	2 nd Tier (25,001 - 12,500 ganons per month)	\$ 4.60	
	3 rd Tier (42,501 – 60,000 gallons per month)	\$ 6.10	
THE UNIVERSITY OF NO	4 th Tier (60,001 and above gallons per month)	\$ 7.10	

Metropolitan Domestic Water Improvement District, AZ

Block rate design considerations

- For block rate structure designs, decide on:
 - The correct number of blocks
 - Where the blocks should end/start
- Remember your larger users
- Keep in mind your base charge and consumption allowance
- Set significant rate differentials between blocks
- Meter reading must be punctual, and meters must be reliable

RATES REVIEW

Shift Blocks to Better Reflect Usage (if using)

RATES REVIEW

Add Allowance if Concerned with Affordability

Customer Classes

Alternative	Targets
One rate structure for all	All are equal
Separate rate structure for residential, irrigation, commercial, industrial, governmental, or wholesale customers	Specific type of customer
One rate structure, but with different base charges based on meter size	Non-residential or multi-family housing
One rate structure for all, but with blocks that implicitly only target non- residential use	Non-residential
Negotiated rate structure with individual high-use customers (typically an industrial customer)	Only one customer
Different rates for customers outside municipal limits/service area boundaries	"Outside" customers

Cheaper Commercial or Industrial Rates

The following monthly water rates are effective for residential and business customers:

Inside City Limits:

First 2,000 gallons or less per month \$10.00 Over 2,000 gallons per month (per 1,000/gal) \$ 1.85

INDUSTRIAL CUSTOMERS WATER and SEWER RATES

First 3,000 gallons or less per month Over 3,000 gallons up to 300,000 gal./per M gal Over 300,000 gal up to 500,000 gal/per M gal Over 500,000 gal up to 1,500,000 gal/per M gal Over 1,500,000 gal/per M gal

\$6.75 \$0.68 \$0.62 \$0.55 \$0.53 Camilla, GA

146

Cheaper Commercial or Industrial Rates

Residential Rates

0 - 2,000 (Minimum) 2,001 - 6,000 6,001 - 10,000 10,001 - 20,000 All Over 20,000

Current Rates

\$19.67 \$5.79 / 1,000 gals. \$6.14 / 1,000 gals. \$9.22 / 1,000 gals. \$10.75 / 1,000 gals

Commercial Rates

0 - 2,000 (Minimum) 2,001 - 48,000 All Over 48,000 \$29.49 \$3.51 / 1,000 gals. \$4.10 / 1,000 gals.

Agricultural Rates

0 - 2,000 (Minimum)

THE UNIVERSITY OF NORTH CAROLIN 2,001 - 48,000 ENVIRONMENTAL FINANCE CENTER All Over 48,000 \$21.45 \$2.57 / 1,000 gals. \$3.57 / 1,000 gals.

¹⁴⁷ Wayne, NC Example: rates for special classes of customers

2017 QUARTERLY RATES

WATER \$39.57 0 – 5,000 Gallons \$ 6.60 Per T/Gallons 5,000 +

2017 SENIOR RATES

Water \$35.61 0 – 5,000 Gallons \$5.94 Per T/Gallons 5,000 +

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL ENVIRONMENTAL FINANCE CENTER

148

Plymouth Village, NH

Example: rates for special classes of customers

Combined		Quantity Charges	
Water & Sev	ver	CCF / Mo.	
		1st 300 cf	Over 300 cf
	IAL		
WATER	2017 10.00%		
2017	Regular Residential	1.47	2.46
2017	Low Income Residential	1.33	2.21
	(90 % of Regular Residentia	al)	

THE UNIVERSITY OF ENVIRONMENTAL FINANCE CENTER

149

Great Falls, MT

Special rates and riders

- Irrigation rates
 - Meter and charge separately for outdoor water use and price that water higher than for regular water use
- Seasonal rates
 - Prices are higher during high-use times of year, encouraging conservation
 - For many systems, this is the summer unless you are a winter holiday area or get a lot of snowbirds
- Drought riders

Surcharge when supplies are most stressed (forced conservation)
 THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
 ENVIRONMENTAL FINANCE CENTER

Seasonal Rates

- Prices are higher during high-use times of year, encouraging conservation
- For most systems, this is the summer unless you are a winter holiday area or get a lot of snowbirds

RATES AND CHARGES

OCTOBER THROUGH APRIL MAY THROUGH SEPTEMBER

\$ 3.00 PER 1,000 GALLONS

\$ 4.60 PER 1,000 GALLONS

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL ENVIRONMENTAL FINANCE CENTER

Cactus Stellar Ltd., AZ

152

TOWN OF IPSWICH WATER & SEWER RATES

WATER RATE

Non-residential water rate (Base Rate): \$8.33 per 100 cubic feet (Effective May 1, 2016)

Residential water rate (Seasonal Rate):

Summer (May 1, 2017 – September 30, 2017): \$12.50 per 100 cubic feet

Winter (Nov 1, 2016 – April 30, 2017): \$3.38 per 100 cubic feet

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL ENVIRONMENTAL FINANCE CENTER

Ipswich, MA

153

- Meter and charge separately for outdoor water use and price that water differently than regular water use
 - Why would you charge higher?
 - Why would you charge lower?

<u>Residential</u>

0 through 4,000 gallons\$ 5.27 Per Thousand4,001 through 9,000 gallons\$ 8.10 Per Thousand9,001 gallons and up\$ 10.90 Per Thousand

Commercial, Apartments and Mobile Home Parks

0 through 10,000	\$ 6.69 Per Thousand
10,000 and up	\$ 8.03 Per Thousand

<u>Irrigation</u>	
Per thousand gallons	\$ 10.72

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL ENVIRONMENTAL FINANCE CENTER

155

Stockbridge, GA

IRRIGATION BASE WATER RATES (Residential and Commercial)

Inside Southport City Limits \$7.45 Outside City Limits: \$11.18

Usage Rates 0-10,000 gallons Inside Southport City Limits: \$5.50 per 1,000 gal. Outside City Limits: \$8.25 per 1,000 gal.

Usage Rates > 10,000 gallons Inside Southport City Limits: \$7.00 per 1,000 gal. Outside City Limits: \$10.50 per 1,000 gal.

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL ENVIRONMENTAL FINANCE CENTER

¹⁵⁶ Southbridge, NC

Rate Structure for Residential Customers:

- 0 -- 2,000 gallons \$22.00 minimum
- 2,100 -- 7,000 gallons \$ 5.50/thousand

Irrigation Rate (for those with an irrigation meter only):

0	 2,000 gallons	\$22.00 minimum
2,100	 10,000 gallons	\$15.00 per thousand
10,100	 up	\$20.00 per thousand

Low Supply and Drought Surcharges

 Prices increase only when supplies of water are limited, encouraging conservation at crucial times

Drought Surcharges

Water shortage stage	Water use Block 1	Water use <u>Block 2</u>
	1,000-2,000 gallons	3,000-5,000 gallons
Stage 1	No surcharge	No surcharge
Stage 2	No surcharge	1.25 x Block 2 rate
Stage 3, Emergency	No surcharge	1.5 x Block 2 rate
Water use Block 3	Water use Block 4	Water use Block 5
6,000-10,000 gallons	11,000-15,000 gallons	16,000 or more gallons
1.25 x Block 3 rate	1.5 x Block 4 rate	2 x Block 5 rate
1.5 x Block 3 rate	2 x Block 4 rate	3 x Block 5 rate

3 x Block 4 rate

2 x Block 3 rate

159

Orange County, NC

4 x Block 5 rate

Low Supply Surcharges

COMMODITY RATES PER 1,000 GALLONS PER MONTH BY CONSERVATION STAGE IN EFFECT					
(Zero Ga	llons Included in Base Rate)		Stages 1 & 2	Stage 3 ^a	Stage 4 ^a
1st Tier:	0- 4,000 Gallons	\$	<mark>6.8</mark> 0	6.80	6.80
2nd Tier:	4,001 – 13,000 Gallons	\$	10.20	10.20	10.20
3rd Tier:	13,001 – 20,000 Gallons	\$	12.30	15.00	20.00
4th Tier:	20,001 – 30,000 Gallons	\$	12.42	20.00	40.00
5th Tier:	over 30,000 Gallons	\$	12.55	30.00	70.00

Drought Surcharges

- 3. That the above rates charged for non wholesale water customers shall be increased for any consumption above 2,000 as follows when the water level at the Lake of Egypt spillway, at any time during a billing cycle, falls below the levels specified:
 - a. 24 inches below spillway rates shall increase \$1.00 Per thousand gallons
 - b. 30 inches below spillway rates shall increase \$2.00 Per thousand gallons
 - c. 36 inches below spillway rates shall increase \$3.00 Per thousand gallons
 - d. 40 inches below spillway rates shall increase \$5.00 Per thousand gallons
 - e. 48 inches below spillway rates shall increase \$10.00 Per thousand gallons

161

Lake of Egypt, IL

Restriction example

THE UNIVERSITY OF NORTH CAROLIN Restrictidays of the week

162

Milliken, CO

Restriction example

Watering Restrictions

Schedule

Odd / Even and time of day watering restrictions in effect from May 1 through September 30.

Odd / Even

The use of the City of Victoria's water supply system for lawn and garden sprinkling and irrigation shall be limited to an odd / even schedule corresponding to property addresses each year from May 1 through September 30.

Homes with even number addresses are allowed to water only on even number calendar days and odd number addresses are allowed to water only on odd number calendar days. To conserve water and prevent the wasteful effects of irrigation during the day, no person shall irrigate using the public water supply system between the hours of 10 a.m. and 5 p.m. on any day of the week.

Citations

The city will be issuing citations for property owners found vi measures are necessary to protect our natural resources and conserve water will result in higher costs for all our residents,

Restricts Days of the Week Restricts Time of Day

Seasonal

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL ENVIRONMENTAL FINANCE CENTER

163

Victoria, MN

Blue Lake Springs, CA

Drought restriction example Drought Stage 1 Drought Stage 2 Drought Stage 2 Drought Stage 2 Drought Stage 2

Water Supply Conditions

- Slightly Restricted Water Supplies (below norm
- Asking shareholders for up to 10% Supply Redi

Drought Stage

- Voluntary reductions in use NO watering of for
- Voluntary Odd/Even outside watering
 - Odd addresses: Tues., Thurs., Sat.
 - Even addresses: Wed., Fri., Sun.
- No watering between 10am and 6pm
 - ENVIRONM

Water Supply Conditions

- Moderately Restricted Water Supplies
- Necessary 20% Total Supply Reduction

Drought Stage

- Mandatory stage with restrictions on use
- Odd/Even days watering based on addresses.
 - Odd addresses: Tues., Thurs., Sat.
 - Even addresses: Wed., Fri., Sun.
- No watering between 10am and 6pm
- No watering of forest trees (Bark Beetle Trees)
- No unnecessary watering (decks, driveways, cars, etc.)

Water Supply Conditions

- Severely Restricted Water Supplies
- Necessary 35% Total Supply Reduction

Drought Stage

- Mandatory restrictions (severe prohibitions) on use
- ABSOLUTELY NO OUTSIDE WATERING

A Balanced Budget?

Budget Expenses		
	Account	Budget
19	30-810-01 W/S PROF. SERVICES	\$500.00
20	30-810-02 TOWN MANAGER SALARY	\$28,499.99
21	30-810-03 W/S EMPLOYEE SALARY	\$57,200.00
22	30-810-04 CLERK SALARY	\$37,251.88
23	30-810-05 FICA EXPENSE	\$8,703.00
24	30-810-06 W/S EMPLOYMENT TAX	\$975.00
25	30-810-07 W/S OVERTIME	\$4,500.00
26	30-810-08 MERIT BONUS	\$3,000.00
27	30-810-09 HOLIDAY/EMPLOYEE APREC	\$1,200.00
28	30-810-10 POSTAGE	\$2,700.00
29	30-810-11 Office Supplies/Repairs	\$4,700.00
30	30-810-12 PHONE	\$3,400.00
31	30-810-13 W/S UTILITES	\$30,000.00
32	30-810-14 TRAINING	\$2,400.00
33	30-810-15 Employee Screening	\$105.00
34	30-810-16 MAINT/REPAIR:SYST-EQUIP	\$30,000.00
35	30-810-17 Mayor Salary	\$1,800.00
36	30-810-18 Board Salary	\$10,500.00
37	30-810-20 W/S UNIFORMS	\$2,000.00
38	30-810-30 GAS AND OIL FOR VEHICLES	\$4,500.00
39	30-810-31 TIRES FOR VEHICLES	\$600.00
40	30-810-32 REPAIRS TO VEHICLES	\$1,000.00
41	30-810-33 SUPPLIES & MATERIALS	\$3,000.00
42	30-810-34 CHEMICALS AND SALT	\$20,000.00
43	30-810-45 CONTRACTED SERVICES	\$36,500.00
44	30-810-46 STATE PERMITS	\$1,700.00
45	30-810-48 DUES/SUBSCRIPTIONS	\$1,500.00
46	30-810-50 DEPRECIATION	\$0.00
47	30-810-54 INSURANCE	\$13,608.00
48	30-810-55 HOSPITAL INSURANCE	\$22,443.00
49	30-810-57 MISC EXPENSE	\$500.00
50	30-810-60 W/S - LGERS	\$9,272.00
51	30-810-70 WATER STUDY EXPENSES	\$24,000.00
52	30-810-74 Online Payments SVC	\$1,600.00
53	30-810-75 ARRA LOAN PRINCIPAL	\$8,875.00
54	30-810-76 PURCHASE WATER BILL	\$2,400.00
55	30-810-79 Banking Fees	\$500.00
56	30-810-89 CAPITAL OUTLAY NEW EQUIP	\$0.00
57	30-810-90 TRANSFER TO OTHER FUND	\$0.00
58	30-810-95 FINES AND PENALTIES	\$1,500.00
		\$382 932 87

	Budget Revenues				
	Account	Budget			
1	30-329-00 W/S INTEREST EARNED DEPOS	\$0.00			
2	30-334-00 CONTRIBUTIONS/DONATIONS	\$0.00			
3	30-335-00 W/S MISC. REVENUE	\$700.00			
4	30-336-00 FUND BALANCE APPROPRIATED	\$9,187.87			
5	30-345-01 SALES TAX REFUND	\$0.00			
6	30-371-01 W/S CHARGES	\$344,445.00			
7	30-371-02 W/S ADJUSTMENTS	\$0.00			
8	30-373-00 TAP CONNECTIONS	\$1,500.00			
9	30-373-02 SERVICE CHARGES/CUT OFFS	\$12,500.00			
10	30-373-04 IMPACT FEES	\$1,000.00			
11	30-373-05 CAPITAL CONTRIBUTIONS	\$0.00			
12	30-374-00 Online W/S Payment Fee	\$1,600.00			
13	30-375-80 Contributed Capital - G.R.S.P.	\$0.00			
14	30-375-81 Contributed Capital Fund	\$0.00			
15	30-377-00 RBEG - Pump Station	\$0.00			
16	30-378-00 I&I Study Grant - Commerce	\$12,000.00			
17	30-385-00 SALE OF ASSETS	\$0.00			
18	30-386-00 TRANSFER FROM OTHER FUND	\$0.00			
		\$382,932.87			

\$382,933 = \$382,933But revenues and expenses ca vary significantly from your budget!

ENVIRONMENTAL FINANCE CENTER

THE UNIVERSITY

Revenue Variability

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL ENVIRONMENTAL FINANCE CENTER

Rate changes

change

Losing a big

Economic

Weather

STOP

customer

Changes in collection rates

Conditions THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL ENVIRONMENTAL FINANCE CENTER Water use restrictions

Rate changes

 As rates go up, usage goes down

• As a rule of thumb, typically usage goes down 3-4% for every 10% increase in rates

population changes

 Customers could be coming into your system or leaving your system

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL ENVIRONMENTAL FINANCE CENTER

Loss of a big customer

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL ENVIRONMENTAL FINANCE CENTER Some customers use significantly more water than others.

 Losing or gaining a single big user can have a disproportionate impact on your budget

Economic conditions

 Economic downturns can cause customers to cut back on water use.

 Conversely, periods of economic growth can lead to higher water consumption

Changes in collection rates

 Even if the number of customers doesn't change, how often they are paying you may be changing

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL ENVIRONMENTAL FINANCE CENTER

weather

- Rainy conditions or dry/drought conditions can impact how much water customers use for outside irrigation
- Rainy conditions can impact how much additional water is entering your wastewater system

Water Use Restrictions

Whether due to water supply shortages or drought conditions, restricting water use will obviously impact revenues

Fixtures use less water today than in the past, and overall per capita water demand is decreasing across the country

Source: Orange Water and Sewer Authority, North Carolina THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL ENVIRONMENTAL FINANCE CENTER

Source: Orange Water and Sewer Authority, North Carolina THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL ENVIRONMENTAL FINANCE CENTER

Bill Correctly - water

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL ENVIRONMENTAL FINANCE CENTER

Bill Correctly - wastewater

Consider

- Is the wastewater treatment of all your customers the same?
- Do you have any industrial wastewater users whose waste is more costly to treat? 179

What not to do? Potential Pitfalls in rate making

- Making the rate design too complex
- Not setting a solid revenue requirement
- Lack of consideration of revenue variability
- Counting on growth that never comes
 - "Build it and they will come"
 - Declining population or loss of large customer(s)

- Saving up your rate increases for one big increase
 - Incremental increases are key
- Lack of communication before, during, and after the rate making process
 - Tell your story or someone else will
What to do?

- Make multiple forecasts based on different assumptions
- Ideally, be conservative
- Don't forget price elasticity!
 - 10% 1 rates ~ 3-4% 1 consumption
- Use tools to stress test projections
- Give decision-makers options to consider
- Make incremental rate increases
- Communicate early and often!

WATER AND WASTEWATER RATES ANALYSIS MODEL

Created by the Environmental Finance Center at the University of North Carolina, Chapel Hill Funded by the U.S. E.P.A. and the N.C. Department of Environment and Natural Resources

<u>http://efc.sog.unc.edu</u> or <u>http://efcnetwork.org</u> Find the most up-to-date version in Resources / Tools

ENVIRONMENTAL FINANCE CENTER

When was your last rate increase?

Sometime in the past year
In the past three years
In the past five years
It's been a little while...
Not part of a utility

When should you revisit your rates?

- We recommend revisiting your rates *every year* to make sure that your utility's revenues can sustain its operations (and then some)
 - Some utilities find that small, yearly increases ensure that revenues from rates are sustainable
 - Other utilities find that implementing rate increases less frequently allows them to make more targeted increases and rate updates

Image by Joe Pictos found on The Noun Project

Are Utilities Asking for Enough?

Source: UNC-EFC: Results of the 2017-2018 North Carolina Water and Wastewater Utility Management Survey

When should you increase your rates?

- While it is ultimately up to the utility to determine when to increase rates, the EFC recommends updating rates at least every four years
 - This accounts for inflation, changes in customer base, asset management, debt service, and several other financial factors

Image by Vectorstall found on The Noun Project

Rate increases and Affordability

- Be wary of sudden, drastic rate increases
- These may overwhelm your customer base and significantly impact what customers are able (or willing) to pay
- Additionally, consumption will drop as rates increase
 - Larger increases = noticeable drop in consumption

Affordability tool

Instructions

Input

Socioeconomic Metrics

Assessment

This tool contains a series of dashboards which allow users to enter relevant Census data on their service community to help assess the affordability of their water or wastewater rates on their residential customers. The tool also allows for a new rate structure to be entered to see how affordability compares from one rate structure to the next. To navigate between pages, use either the tab titles at the top of the page, or the next and previous buttons at the bottom of the page.

The "Inputs" tab allows for the user to geographically select their desired municipality or census place by navigating through a series of map selector tools. To find the correct census place, select the state from the dropdown menu at the top of the screen, the proceed to click on the county containing the census place. The next tile will then display all of the census places within that county and their Median Household Income. Make sure to follow the instructions underneath the map tiles for exiting out of the selected view.

There are input boxes on this tab that allow the user to enter the utility's current monthly residential water and wastewater rates, as well as alternative rates to be explored. The entered rates will impact the amount that customers pay as a portion of their monthly income, displayed on the "Assessment" tab.

The user can then proceed to the "Socioeconomic Metrics" tab to view key socioeconomic indicators for their desired place, such as Median Household Income and Percentage of the Population Below the Poverty Line, and compare them to the state levels.

In the "Assessment" worksheet, the tool automatically populates tables and charts to assist you in assessing the affordability of your utility's current and alternative rates for the average customer, low-income customers, and customers of varying ranges of

- Water and Wastewater Affordability Assessment Tool helps you track how a rate increase will affect customers across several income buckets by showing:
 - % of annual income spent on water service charges
 - Socioeconomic metrics of selected census place

Check out the tool!

The water utility revenue risk assessment tools helps utilities and technical assistance providers to quickly determine the proportion of residential revenues from water sales that may be at risk of loss when residential customers change demand patterns.

What is the Value of an SRF Loan? Subsidized Loan Calculator

The subsidized loan calculator demonstrates what cost savings an SRF loan at 1/2 market rate gives over full market rate.

You can find the tool at efc.sog.unc.edu under "Resources", or follow the link here: https://efc.sog.unc.edu/resou rce/water-and-wastewaterresidential-rates-affordabilityassessment-tool-2021/

The bottom line

- Rate increases are necessary to sustain healthy utility finances and fund future projects
- Rate increases can be difficult on customers, especially sudden, large increases
- Rate increases look different for every utility, but the most efficient will balance required revenues and customer considerations

What affects your customers will matter

- Customers often take water quality for granted
- Showing that additional revenues are required to maintain or improve water quality gives more context to rate increases
- Additional service charge dollars are coming right back in the form of higher water service quality

Improving your system with rate increases

- Increased system efficiency
 - This may save your system money in the long run!
- Improved aesthetic water quality

Appeal Based on What's Good

Water has MWRA bubbling with joy

New process said to improve taste

By Michael Levenson GLOBE CORRESPONDENT

It is flowing, 275 million gallons a day into our homes, and, boy, is it delicious, state officials say.

Tap water flowing to 2.3 million people in Greater Boston is now dramatically better tasting, officials say, thanks to a new treatment plant in Marlborough that uses ozone to remove contaminants with a decrease in chlorine. "It's clean, and it's crisp, and it's refreshing, and it's a great product; we'd put the taste of our water up against any bottled water," said Frederick A. Laskey,

THE UNIVERSITY

ENVIRONMENTAL

executive director of the Massachusetts Water Resources Authority. "Put our mater in the refrigerator, an en's great. And our water is great out of the tap."

The ozone treatment not only affects taste, it also makes the water safer and cleaner than the stuff Greater Bostonians have been quaffing for generations, Laskey said.

A 2001 federal appeals court ruling spurred the MWRA to use ozone as a water purifier. The US Environmental Protection Agency had asked the authority to build a more sophisticated water filtration plant to remove contaminants. But the MWRA successfully argued that an ozone system could be built that would make the wa-WATER, Page A12 "It's clean, and it's crisp, and it's refreshing, and it's a great product..."

Meeting your utility's goals

- Are you meeting your utility's goals?
- Are you meeting water quality standards?
- Do you have sufficient capacity to meet current and future needs?

Image by Memed_Nurrohmad on Pixabay

Saving for the future

- Creating (or bulking up) an asset management plan
- Building up reserve funds for leaks, wear and tear
- Having funds stored away in case a major crisis happens
 - Like a water main break!

Warn of Consequences

THE UNIVERSITY OF NORTH CAROLINA ENVIRONMENTAL FINANCE CENTER

When it shuts down our water and sewer systems. Our water and sewer pipes are getting older by the day, putting our community at risk for loaks and broakago. Join us in stopping this problem before it gets worse. Bupporting initiatives to invest in water and wastewater infrastructure. For more information call (200) 200-20000 or visit www.WatertsLife.net.

A crisis may look something like this

THE UNIVERSITY OF NORTH CAROLINA AT CH ENVIRONMENTAL FINANCE CENTER

Give your stakeholders context

- Often, your board and customers don't know what problems you may be facing in your system
- "Out of sight, out of mind"
- Use personal examples to ground your requests for increases

Use Visuals

THE UNIVERSITY OF NORTH CAROLINA AT C种姓哈哈姓哈哈拉斯 www.wuc.on.ca/information/distribution.our_watermains.cfm ENVIRONMENTAL FINANCE CENTER

Questions?

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL ENVIRONMENTAL FINANCE CENTER